
Rich Web Applications
with

Java and AJAX

June 2005

Stephen Maryka
CTO

ICEsoft Technologies Inc.

http://www.icesoft.com/icefacesTrial/registrationNEW.php

The Evolution of the Enterprise Application

Is evolution really circular? Or, maybe it’s a never-ending spiral. This appears to be the case
when we examine the history of the enterprise software application. In the early era of
enterprise computing there were no trade-offs made with regard to an appropriate application
model. There was only one option — a thin-client model leveraging centralized servers and
delivering presentation to the user via a dumb terminal.

With the onset of the personal computer, the model changed, and power to the desktop had a
strong evolutionary effect on the application model, moving it away from centralized computing
toward a distributed model where individual computers hosted their own set of applications.
This fat-client model pushed computation and presentation to the client. With advancement in
graphics technologies, it became feasible to provide the user with a rich interactive presentation
environment for applications. But these advancements did not come for free. Power to
the desktop resulted in skyrocketing costs for deployment, management and maintenance
of applications. Total cost of ownership for applications within the enterprise increased
dramatically.

Next came the Internet era, into which the web application was born, and we spiraled back to
a thin-client model. This time around, the application’s presentation was delivered as markup
(HTML specifically) and the web browser (the modern dumb terminal) rendered that markup
to generate the user presentation for the application. For the enterprise, this new thin-client
model reversed the total cost of ownership trend from the previous era, but again, not for free.
The crude user interaction model for the web seriously impacted the richness that could be
delivered to the application user, resulting in less effective applications and impeded the total
cost of ownership gains that the thin-client model touts.

So what’s next in the evolution of the enterprise application? Are we doomed to spiral back
toward a thick-client model in order to achieve the application richness that we have come to
expect? Microsoft would like to think so as they push forward with their vision of the Universe—
namely Longhorn and Avalon. Replacing the web model entirely seems a bit far-fetched, even
for Microsoft, so we ask ourselves, ‘Can the existing web model be leveraged to deliver the
superior presentation capabilities we demand while continuing to drive down the total cost of
ownership for enterprise applications?’ From the business perspective, can we create industrial
strength enterprise applications that transform the user experience without increasing total cost
of ownership? Must we spiral backward to the thick-client model to achieve richness, or can we
leap forward within the existing thin-client model?

This paper explores this possibility further through the examination of current trends, dissection
of the underlying problem, and the introduction of an approach that delivers a superior user
experience to web-based enterprise applications, while minimizing the total cost of ownership of
those applications by preserving the thin-client model.

State of the Art—A Proprietary Hodgepodge

The J2EE technology stack is a shining example of a standards-based approach that works.
Look no further than the number of J2EE applications deployed today to validate its

2 Download a copy of ICEfaces.© 2005 ICEsoft Technologies Inc.

http://www.icesoft.ca/products/icefaces.html
http://www.icesoft.com/icefacesTrial/registrationNEW.php
http://www.icesoft.com/icefacesTrial/registrationNEW.php
http://www.icesoft.com

success — over 250,000 J2EE enterprise application deployments, and growing
by more than 30,000 per year. The J2EE stack provides a solid foundation for
both B2B and B2C applications, and a multitude of commercial and open source
solutions exist for the development and deployment of these applications. Naturally, a very
strong development community has matured around J2EE, and the Java Community Process
continues to drive new capabilities into the stack. One of the newest additions is JavaServer
Faces (JSF), which finally delivers a comprehensive, component-based application model for
client-presented web applications. So it would seem that J2EE delivers an industrial-strength,
standards-based solution for the development of rich web applications today. Unfortunately,
while JSF undoubtedly delivers a superior component-based framework for web applications,
it is a server-side technology that relies on markup-based presentation and the existing web
application model. As such, JSF is exposed to all the same limitations that seem to be driving us
back toward the thick-client model.

It is apparent that while J2EE provides a solid technology foundation and has fostered a
vibrant development community, it still struggles in the final mile when we leave the server
environment and deliver content, and supposedly, the rich user experience to the browser.
So how has industry compensated? Well, up until recently it has been through a variety of
proprietary approaches that require proprietary markup formats and rely on applet or plugin-
based support at the browser to create the desired richness. While these approaches can be
effective, they don’t typically mix well with existing web content and often require a proprietary
development environment, which forces developers away from their core competencies of J2EE
development. Last, these approaches begin to drive back up total cost of ownership as both
Java Applets, and browser plugins introduce browser and operating system idiosyncrasies. At
enterprise scale, the maintenance issues become significant quickly and can have a devastating
impact on total cost of ownership. As a result, these proprietary approaches have been largely
relegated to green field applications and have gained little, if any, traction in the enterprise.

AJAX – The JavaScript House of Cards

If we dismiss proprietary approaches, as most of the J2EE world has, what are we left with?
Today, a tremendous amount of energy is being expended on the one standards-based,
client-side mechanism available to us — namely, JavaScript. We all know JavaScript as the
script-based Java mutation that has succeeded in delivering some basic rich features to web
applications. It achieves this through manipulation of the web application’s UI via the DOM
representation of that UI in the browser. JavaScript also facilitates client-side response to user
interaction with the application UI. Thus we get dynamic behavior such as buttons changing
their presentation when we mouse over them. The user of JavaScript and HTML is often
referred to Dynamic HTML or DHTLM.

Most recently, industry has pushed beyond basic DHTML and has begun to exploit a server
communication mechanism in JavaScript called XMLHttpRequest. This activity has spawned
a new generation of web applications based on an approach referred to as Asynchronous
JavaScript and XML or AJAX. The evidence is clear when you look at sophisticated AJAX-based
applications like Google’s GmailTM; AJAX can deliver a rich user experience within the existing
web application model. So, problem solved, right? Well, not exactly. Developing sophisticated
AJAX-based applications is fraught with peril. To begin with, JavaScript is not Java. It is not an

3 Download a copy of ICEfaces.© 2005 ICEsoft Technologies Inc.

http://www.icesoft.ca/products/icefaces.html
http://www.icesoft.com/icefacesTrial/registrationNEW.php
http://www.icesoft.com/icefacesTrial/registrationNEW.php
http://www.icesoft.com

industrial-strength language with industrial-strength development tools, so writing,
debugging, and maintaining AJAX applications is difficult. Also, JavaScript is not the
core competency of all those J2EE developers out there, so now you need to recruit
some of those scarce resources that are forging the AJAX path. Even with that expertise in
hand, you are not out of the woods yet. What about the idiosyncratic nature of JavaScript
implementations within different commercial browsers? There is nothing more rewarding than
maintaining scads of browser-specific code within your application — was that one application
or four applications that you are trying to maintain? And what about those nasty JavaScript
memory leaks? What used to be a short-lived problem (the life time of a single web page) is
now a full-fledged issue as single page AJAX applications can hang around indefinitely chewing
up resources. And don’t forget about all those security issues. Not only is all your source code
readily available from the browser’s source view, but also your corporate data is traveling over
the network in clear text XML documents. Financial institutions are not likely to be thrilled with
those security features. The bottom line is, ad hoc AJAX-based applications will leave your total
cost of ownership equation in tatters. There must be a way to harness the power of AJAX within
a standards-based application model like JSF to deliver truly industrial-strength solutions with
the rich features that enterprise applications are demanding.

The Root Problem With AJAX

So it seems that even though AJAX-based solutions are in their infancy, serious issues with
the approach are mounting rapidly. Let’s examine why that might be. Generally, the way we
achieve increased richness in an AJAX application is to replicate a subset of the application data
model and business logic in the client browser using JavaScript. We then pass that replicated
data through the replicated business logic to cause some sort of intelligent manipulation of
the application’s presentation via the browser DOM to create a richer user experience. That
last bit—manipulation of the presentation layer via the browser DOM — is the only bit that
JavaScript was originally intended to do. The rest of it is pushing JavaScript outside its intended
purpose, which typically spells trouble. Furthermore, the approach pretty much dismantles the
Model View Controller architecture at the root of the web application model, forcing duplication
of data and business logic between client and server. This duplication opens the door to
divergent functionality between client and server, and compounds the maintenance issues for
applications. Once again the root issue is escalating complexity, which yields skyrocketing total
cost of ownership, and makes the AJAX approach questionable for enterprise applications.

Towards a Solution — Harnessing AJAX

So if we reject complex, JavaScript-based client-side application replication as an approach, can
we still leverage AJAX mechanisms to achieve richness? Let’s start by putting JavaScript back in
its place, so we will relegate it to its primary functions of basic presentation layer manipulation
via the browser DOM and event generation based on user interaction with the presentation.
Next, we move the data model and business logic back where they belong, onto the server.
J2EE provides an appropriate foundation to support this. Now we are left with the same old
problem that we have always had. How do we bridge between the server-side application
logic and the client-side presentation layer to deliver that rich user experience? The answer is
alarmingly simple if we move the presentation layer to the server and invent a mechanism for
intelligently replicating it back to the client browser.

4 Download a copy of ICEfaces.© 2005 ICEsoft Technologies Inc.

http://www.icesoft.ca/products/icefaces.html
http://www.icesoft.com/icefacesTrial/registrationNEW.php
http://www.icesoft.com/icefacesTrial/registrationNEW.php
http://www.icesoft.com

In the browser, the presentation layer is ultimately represented in a DOM, and it
is that DOM that we move to the server for manipulation. When application state
changes cause presentation changes, those changes manifest themselves in the
server-side DOM. From here, incremental DOM updates are transmitted to the browser via a
lightweight AJAX-based bridge where the changes are reconstructed and the browser DOM
is modified appropriately. This mechanism results in superior presentation updates because
only minimal incremental changes are required, not full page refreshes as we have come to
expect from web applications. Furthermore, the approach facilitates asynchronous presentation
updates driven from the server as application state changes. And yes, the AJAX bridge
overcomes most of the general concerns that we voiced earlier with regard to ad hoc AJAX.
Specifically, the AJAX bridge:

 • Is small and well contained, deals with browser idiosyncrasies and eliminates
 JavaScript memory leaks.

 • Eliminates data and business logic replication at the browser, thus eliminating security
 issues within the application.

We have now addressed most of the issues related to improving the presentation element of
the Application, but we need to address user interaction with that presentation. To achieve this
we hook the JavaScript event model back into the application event model via the same AJAX
bridge. This means that our application can react to user interaction with the presentation in
real time and effect changes in the back end application data model. Ultimately, these state
changes are reflected in the application’s presentation, and the incremental presentation
changes can be propagated back to the client for presentation to the user. We now have an
architecture that facilitates rich web applications and leverages server-side, industrial-strength,
standards-based J2EE technologies to achieve it. This basic architecture is illustrated in Figure 1
below.

Figure 1: Basic J2EE/AJAX Architecture

While this basic architecture has merit, there are a number of holes that need to be filled for an

5 Download a copy of ICEfaces.© 2005 ICEsoft Technologies Inc.

http://www.icesoft.ca/products/icefaces.html
http://www.icesoft.com/icefacesTrial/registrationNEW.php
http://www.icesoft.com/icefacesTrial/registrationNEW.php
http://www.icesoft.com

implementation, like causing a J2EE application to produce DOM as its presentation
output. We now examine an approach that fills these holes and results in an effective
implementation of the architecture. We start with JSF as the foundation.

JSF with Direct-To-DOM Rendering and Incremental Update

One of the profound concepts in JSF is the RenderKit architecture. It provides separation
between JSF component behavior, and the markup that represents those components in the
presentation. The RenderKit architecture facilitates plugging different RenderKits into the
same application in support of different presentation environments; so you might render
HTML to a desktop browser, and WML to a mobile phone, but maintain common server-side
application logic. We leverage this RenderKit architecture in the implementation of the JSF/AJAX
architecture illustrated above, and introduce a revolutionary technology called Direct-to-DOM
rendering to achieve it.

Direct-to-DOM rendering is just what it sounds like, the ability to render a JSF component tree
directly into a W3C DOM data structure. During a standard JSF render pass, the component
tree is traversed and each component renderer produces its output. Direct-to-DOM renderers
produce their output into the server-side DOM. The DOM mutations that result are packaged up
and delivered to the browser via the AJAX bridge and reassembled to create the presentation
for the application. The basic process is illustrated in Figure 2 below.

Figure 2: Direct-to-DOM Rendering

So, if we equip the JSF framework with a Direct-To-DOM RenderKit, we have a mechanism for
efficiently generating and maintaining a server-side DOM, and if we render only components
that have changed, we minimize the number of DOM mutations that must be replicated at the
client-side DOM. The following sequence of diagrams illustrates an incremental presentation
layer update using Direct-to-DOM rendering.

6 Download a copy of ICEfaces.© 2005 ICEsoft Technologies Inc.

http://www.icesoft.ca/products/icefaces.html
http://www.icesoft.com/icefacesTrial/registrationNEW.php
http://www.icesoft.com/icefacesTrial/registrationNEW.php
http://www.icesoft.com

Figure 3: Direct-to-DOM Incremental Update

The combination of Direct-to-DOM rendering and incremental update completely change
how we think about web application page design and opens the door to a myriad of rich,
interactive features that are not shackled to the standard page refresh model.

Asynchronous Presentation Update

Now we not only want smooth incremental updates for presentation changes, but we want to
be able to drive those changes to the client in an asynchronous fashion when the application
state changes. To achieve this, we prime an ongoing update request loop from the client-side
AJAX bridge with an asynchronous XMLHttpRequest for incremental presentation changes.
This request gets fulfilled at the server when the next set of incremental DOM updates is
prepared. The response is transmitted back to the browser and a new request is issued prior

7 Download a copy of ICEfaces.© 2005 ICEsoft Technologies Inc.

http://www.icesoft.ca/products/icefaces.html
http://www.icesoft.com/icefacesTrial/registrationNEW.php
http://www.icesoft.com/icefacesTrial/registrationNEW.php
http://www.icesoft.com

to processing the DOM updates, thus facilitating ongoing asynchronous presentation
updates, as illustrated in Figure 4 below.

Figure 4: AJAX-driven Asynchronous Presentation Updates

Partial Submit—Intelligent Form Processing

While our basic architecture in Figure 1 illustrates a general-purpose event mechanism tying
user events back in the application event model via AJAX, the JSF lifecycle is based on the
standard HTTP Submit mechanism. So we look to leverage this mechanism to create a fine-
grained user interaction model for our JSF application. In the normal JSF lifecycle, a submit
causes input validation, model update, event processing, page navigation, and finally
presentation rendering. Of course with Direct-to-DOM rendering, this process results in smooth
and efficient presentation updates, but it does nothing on its own to enhance the form entry
process. There is no client-side form validation, or intelligent client-side form-processing model
available. Again, we shy away from duplicating this kind of logic in JavaScript on the client, and
look to leverage server resources to achieve this fine-grained interaction with the user.

A mechanism called partial submit is introduced that allows us to connect JavaScript events
back into the JSF application lifecycle through the standard submit mechanism. The partial
submit causes a form submit, but restricts the validation process to controls that the user is
interacting with. The rest of the JSF lifecycle runs normally, allowing the business logic to react
to the user input through valueChangedEvents or other standard JSF mechanisms. Presentation
changes may occur as a result, and these changes will be processed and delivered through the
normal Direct-to-DOM rendering mechanism back to the client. The end result is a fine-grained
user interaction model that facilitates intelligent form processing for JSF applications. The

8 Download a copy of ICEfaces.© 2005 ICEsoft Technologies Inc.

http://www.icesoft.ca/products/icefaces.html
http://www.icesoft.com/icefacesTrial/registrationNEW.php
http://www.icesoft.com/icefacesTrial/registrationNEW.php
http://www.icesoft.com

application developer controls the level of granularity in a manner appropriate for
the application. Interaction may be warranted on a per keystroke basis, between
fields, or between sections of a form. Figure 5 illustrates a partial submit generated
by an onBlur event resulting when the user tabs between fields in a form.

Figure 5: Partial Submit using onBlur

ICEfaces–Creating Rich Web Applications Today

So we have illustrated a number of key concepts that enable us to build rich JSF-based
applications, but how can these concepts be leveraged today to create superior web
applications?

ICEfaces is the commercial embodiment of these concepts, and as such, provides a
comprehensive development and runtime environment for them. ICEfaces arms you with
an industrial-strength, JSF-compliant solution for efficiently building and deploying rich web
applications in a pure thin-client model. There is no need for proprietary browser plugins,
or proprietary API extensions, or brittle JavaScript-laden custom components. Take any JSF
application that you have today and unleash its true potential by using ICEfaces and Direct-to-
DOM rendering. Your applications will never look or act the same again once you apply your
imagination.

Figures 6 below provides a high-level view of the ICEfaces architecture, and how it fits into
JSF, but for all the details see the ICEfaces product documentation at http://www.icesoft.
com/support/devguides.html.

9 Download a copy of ICEfaces.© 2005 ICEsoft Technologies Inc.

http://www.icesoft.com/support/devguides.html.
http://www.icesoft.com/support/devguides.html.
http://www.icesoft.ca/products/icefaces.html
http://www.icesoft.com/icefacesTrial/registrationNEW.php
http://www.icesoft.com/icefacesTrial/registrationNEW.php
http://www.icesoft.com

Figure 6: ICEfaces Architecture

Evolution Revisited

So it would seem that the evolutionary spiral back to the thick-client model can be averted.
We have shown how JSF and AJAX can be combined to produce an industrial-strength solution
for constructing rich web applications in a cost effective manner. We have shown that key
mechanisms in ICEfaces such as Direct-to-DOM rendering and partial submit can transform
an ordinary JSF application into something extraordinary with minimal additional development
effort. The benefits of using ICEfaces for developing your rich enterprise web applications are
numerous:

 • Create a superior user experience and produce more effective enterprise web applications.
 • Stay J2EE and JSF standards compliant.
 • Produce industrial-strength solutions in pure Java.
 • Minimize your dependency on complex and brittle JavaScript.
 • Leverage industrial-strength J2EE development environments and tools.
 • Draw resources from the mature and vibrant J2EE development community.
 • Minimize total cost of ownership for applications through a pure thin-client model.

Visit the ICEsoft web site at www.icesoft.com to learn more about ICEfaces and begin to
realize these benefits today. A free download of ICEfaces is available at: http://www.icesoft.
com/icefacesTrial/registrationNEW.php

10 Download a copy of ICEfaces.© 2005 ICEsoft Technologies Inc.

http://www.icesoft.com
http://www.icesoft.ca/products/icefaces.html
http://www.icesoft.com/icefacesTrial/registrationNEW.php
http://www.icesoft.com/icefacesTrial/registrationNEW.php
http://www.icesoft.com

Copyright 2005 ICEsoft Technologies, Inc. All rights reserved.

No part of this publication may be copied in any form, by photocopy, microfilm, retrieval system, or by any other means now known or hereafter
invented without the prior written permission of ICEsoft Technologies, Inc.

The content in this guide is protected under copyright law even if it is not distributed with software that includes an end user license agreement.

The content in this document is furnished for informational use only, is subject to change without notice, and should not be construed as a commit-
ment by ICEsoft Technologies, Inc.

ICEsoft Technologies, Inc. assumes no responsibility or liability for any errors or inaccuracies that may appear in the informational content contained in
this document.

ICEbrowser and ICEreader are registered trademarks of ICEsoft Technologies, Inc. in Canada and the United States of America.

ICEpdf and ICEfaces are trademarks of ICEsoft Technologies, Inc.

Sun, Sun Microsystems, the Sun logo, Solaris, Java and The Network is The Computer are trademarks or registered trademarks of Sun Microsystems,
Inc. in the United States and in other countries.

Google and Gmail are trademarks owned by Google, Inc.

All other trademarks mentioned herein are the property of their respective owners.

About ICEsoft

ICEsoft Technologies, Inc. is the world’s leading provider of Java browser and stan-
dards-compliant, rich web application technology for the enterprise.

Our portfolio of “Industrial Strength” Java products includes ICEbrowser, the most
widely distributed Java browser in world and ICEpdf, the leading Java PDF rendering
technology. ICEsoft’s new breakthrough product, ICEfaces, with Direct-to-DOM tech-
nology, allows J2EE developers to develop a new class of web applications. ICEfaces
is a revolutionary development and runtime environment for developing rich J2EE web
applications in a pure thin-client model.

ICEsoft Technologies, Inc.

Suite 300, 1717 10th St. NW
Calgary, Alberta, Canada
T2M 4S2

Toll Free: 1-877-263-3822 USA & Canada
Main: +001 (403) 663-3322
Fax: +001 (403) 663-3320

For additional information, please visit the ICEsoft website:
http://www.icesoft.com/

Sept. 2005§

